Skip to contents

Notation

This guide is designed to summarize key notation and quantities used the COMBO R Package and associated publications.
Term Definition Description
XX Predictor matrix for the true outcome.
Z(1)Z^{(1)} Predictor matrix for the first-stage observed outcome, conditional on the true outcome.
Z(2)Z^{(2)} Predictor matrix for the second-stage observed outcome, conditional on the true outcome and first-stage observed outcome.
YY Y{1,2}Y \in \{1, 2\} True binary outcome. Reference category is 2.
yijy_{ij} 𝕀{Yi=j}\mathbb{I}\{Y_i = j\} Indicator for the true binary outcome.
Y*(1)Y^{*(1)} Y*(1){1,2}Y^{*(1)} \in \{1, 2\} First-stage observed binary outcome. Reference category is 2.
yik*(1)y^{*(1)}_{ik} 𝕀{Yi*(1)=k}\mathbb{I}\{Y^{*(1)}_i = k\} Indicator for the first-stage observed binary outcome.
Y*(2)Y^{*(2)} Y*(2){1,2}Y^{*(2)} \in \{1, 2\} Second-stage observed binary outcome. Reference category is 2.
yi*(2)y^{*(2)}_{i \ell} 𝕀{Yi*(2)=}\mathbb{I}\{Y^{*(2)}_i = \ell \} Indicator for the second-stage observed binary outcome.
True Outcome Mechanism logit{P(Y=j|X;β)}=βj0+βjXX\text{logit} \{ P(Y = j | X ; \beta) \} = \beta_{j0} + \beta_{jX} X Relationship between XX and the true outcome, YY.
First-Stage Observation Mechanism logit{P(Y*(1)=k|Y=j,Z(1);γ(1))}=γkj0(1)+γkjZ(1)(1)Z(1)\text{logit}\{ P(Y^{*(1)} = k | Y = j, Z^{(1)} ; \gamma^{(1)}) \} = \gamma^{(1)}_{kj0} + \gamma^{(1)}_{kjZ^{(1)}} Z^{(1)} Relationship between Z(1)Z^{(1)} and the first-stage observed outcome, Y*(1)Y^{*(1)}, given the true outcome YY.
Second-Stage Observation Mechanism logit{P(Y*(2)=|Y*(1)=k,Y=j,Z(2);γ(2))}=γkj0(2)+γkjZ(2)(2)Z(2)\text{logit}\{ P(Y^{*(2)} = \ell | Y^{*(1)} = k, Y = j, Z^{(2)} ; \gamma^{(2)}) \} = \gamma^{(2)}_{\ell kj0} + \gamma^{(2)}_{\ell kjZ^{(2)}} Z^{(2)} Relationship between Z(2)Z^{(2)} and the second-stage observed outcome, Y*(2)Y^{*(2)}, given the first-stage observed outcome, Y*(1)Y^{*(1)}, and the true outcome YY.
πij\pi_{ij} P(Yi=j|X;β)=exp{βj0+βjXXi}1+exp{βj0+βjXXi}P(Y_i = j | X ; \beta) = \frac{\text{exp}\{\beta_{j0} + \beta_{jX} X_i\}}{1 + \text{exp}\{\beta_{j0} + \beta_{jX} X_i\}} Response probability for individual ii’s true outcome category.
πikj*(1)\pi^{*(1)}_{ikj} P(Yi*(1)=k|Y=j,Z(1);γ(1))=exp{γkj0(1)+γkjZ(1)(1)Zi(1)}1+exp{γkj0(1)+γkjZ(1)(1)Zi(1)}P(Y^{*(1)}_i = k | Y = j, Z^{(1)} ; \gamma^{(1)}) = \frac{\text{exp}\{\gamma^{(1)}_{kj0} + \gamma^{(1)}_{kjZ^{(1)}} Z_i^{(1)}\}}{1 + \text{exp}\{\gamma^{(1)}_{kj0} + \gamma^{(1)}_{kjZ^{(1)}} Z_i^{(1)}\}} Response probability for individual ii’s first-stage observed outcome category, conditional on the true outcome.
πikj*(2)\pi^{*(2)}_{i \ell kj} P(Yi*(2)=|Y*(1)=k,Y=j,Z(2);γ(2))=exp{γkj0(2)+γkjZ(2)(2)Zi(2)}1+exp{γkj0(2)+γkjZ(2)(2)Zi(2)}P(Y^{*(2)}_i = \ell | Y^{*(1)} = k, Y = j, Z^{(2)} ; \gamma^{(2)}) = \frac{\text{exp}\{\gamma^{(2)}_{\ell kj0} + \gamma^{(2)}_{\ell kjZ^{(2)}} Z_i^{(2)}\}}{1 + \text{exp}\{\gamma^{(2)}_{\ell kj0} + \gamma^{(2)}_{\ell kjZ^{(2)}} Z_i^{(2)}\}} Response probability for individual ii’s second-stage observed outcome category, conditional on the first-stage observed outcome and the true outcome.
πik*(1)\pi^{*(1)}_{ik} P(Yi*(1)=k|X,Z(1);γ(1))=j=12πikj*(1)πijP(Y^{*(1)}_i = k | X, Z^{(1)} ; \gamma^{(1)}) = \sum_{j = 1}^2 \pi^{*(1)}_{ikj} \pi_{ij} Response probability for individual ii’s first-stage observed outcome cateogry.
πjj*(1)\pi^{*(1)}_{jj} P(Y*(1)=j|Y=j,Z(1);γ(1))=i=1Nπijj*(1)P(Y^{*(1)} = j | Y = j, Z^{(1)} ; \gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{ijj} Average probability of first-stage correct classification for category jj.
πjjj*(2)\pi^{*(2)}_{jjj} P(Y*(2)=j|Yi*(1)=j,Y=j,Z(2);γ(2))=i=1Nπijjj*(2)P(Y^{*(2)} = j | Y^{*(1)}_i = j, Y = j, Z^{(2)} ; \gamma^{(2)}) = \sum_{i = 1}^N \pi^{*(2)}_{ijjj} Average probability of first-stage and second-stage correct classification for category jj.
First-Stage Sensitivity P(Y*(1)=1|Y=1,Z(1);γ(1))=i=1Nπi11*(1)P(Y^{*(1)} = 1 | Y = 1, Z^{(1)} ; \gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{i11} True positive rate. Average probability of observing first-stage outcome k=1k = 1, given the true outcome j=1j = 1.
First-Stage Specificity P(Y*(1)=2|Y=2,Z(1);γ(1))=i=1Nπi22*(1)P(Y^{*(1)} = 2 | Y = 2, Z^{(1)} ; \gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{i22} True negative rate. Average probability of observing first-stage outcome k=2k = 2, given the true outcome j=2j = 2.
βX\beta_X Association parameter of interest in the true outcome mechanism.
γ11Z(1)(1)\gamma^{(1)}_{11Z^{(1)}} Association parameter of interest in the first-stage observation mechanism, given j=1j=1.
γ12Z(1)(1)\gamma^{(1)}_{12Z^{(1)}} Association parameter of interest in the first-stage observation mechanism, given j=2j=2.
γ111Z(2)(2)\gamma^{(2)}_{111Z^{(2)}} Association parameter of interest in the second-stage observation mechanism, given k=1k = 1 and j=1j = 1.
γ121Z(2)(2)\gamma^{(2)}_{121Z^{(2)}} Association parameter of interest in the second-stage observation mechanism, given k=2k = 2 and j=1j = 1.
γ112Z(2)(2)\gamma^{(2)}_{112Z^{(2)}} Association parameter of interest in the second-stage observation mechanism, given k=1k = 1 and j=2j = 2.
γ122Z(2)(2)\gamma^{(2)}_{122Z^{(2)}} Association parameter of interest in the second-stage observation mechanism, given k=2k = 2 and j=2j = 2.