Set up a Naive Logistic Regression jags.model
Object for a Given Prior
naive_jags_picker.Rd
Set up a Naive Logistic Regression jags.model
Object for a Given Prior
Usage
naive_jags_picker(
prior,
sample_size,
dim_x,
n_cat,
Ystar,
X,
beta_prior_parameters,
number_MCMC_chains,
naive_model_file,
display_progress = TRUE
)
Arguments
- prior
character string specifying the prior distribution for the naive \(\beta\) parameters. Options are
"t"
,"uniform"
,"normal"
, or"dexp"
(double Exponential, or Weibull).- sample_size
An integer value specifying the number of observations in the sample.
- dim_x
An integer specifying the number of columns of the design matrix of the true outcome mechanism,
X
.- n_cat
An integer specifying the number of categorical values that the true outcome,
Y
, and the observed outcome,Y*
can take.- Ystar
A numeric vector of indicator variables (1, 2) for the observed outcome
Y*
. The reference category is 2.- X
A numeric design matrix for the true outcome mechanism.
- beta_prior_parameters
A numeric list of prior distribution parameters for the \(\beta\) terms. For prior distributions
"t"
,"uniform"
,"normal"
, or"dexp"
, the first element of the list should contain a matrix of location, lower bound, mean, or shape parameters, respectively, for \(\beta\) terms. For prior distributions"t"
,"uniform"
,"normal"
, or"dexp"
, the second element of the list should contain a matrix of shape, upper bound, standard deviation, or scale parameters, respectively, for \(\beta\) terms. For prior distribution"t"
, the third element of the list should contain a matrix of the degrees of freedom for \(\beta\) terms. The third list element should be empty for all other prior distributions. All matrices in the list should have dimensionsdim_x
Xn_cat
, and all elements in then_cat
column should be set toNA
.- number_MCMC_chains
An integer specifying the number of MCMC chains to compute.
- naive_model_file
A .BUG file and used for MCMC estimation with
rjags
.- display_progress
A logical value specifying whether messages should be displayed during model compilation. The default is
TRUE
.