M-Step Expected Log-Likelihood with respect to Beta
q_beta_f.Rd
Objective function of the form: \( Q_\beta = \sum_{i = 1}^N \Bigl[ \sum_{j = 0}^1 w_{ij} \text{log} \{ \pi_{ij} \}\Bigr]\). Used to obtain estimates of \(\beta\) parameters.
Arguments
- beta
A numeric vector of regression parameters for the
Y
(true outcome) ~X
(predictor matrix of interest).- X
A numeric design matrix.
- w_mat
Matrix of E-step weights obtained from
w_j
.- sample_size
An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix,
X
.- n_cat
The number of categorical values that the true outcome,
Y
, can take.