
M-Step Expected Log-Likelihood with respect to Gamma
q_gamma_f.RdObjective function of the form: \(Q_{\gamma} = \sum_{i = 1}^N \Bigl[\sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]\). Used to obtain estimates of \(\gamma\) parameters.
Arguments
- gamma_v
A numeric vector of regression parameters for the observed outcome mechanism,
Y* | Y(observed outcome, given the true outcome) ~Z(misclassification predictor matrix). In matrix form, the gamma parameter matrix rows correspond to parameters for theY* = 0observed outcome, with the dimensions ofZ. In matrix form, the gamma parameter matrix columns correspond to the true outcome categories \(j = 1, \dots,\)n_cat. The numeric vectorgamma_vis obtained by concatenating the gamma matrix, i.e.gamma_v <- c(gamma_matrix).- Z
A numeric design matrix.
- obs_Y_matrix
A numeric matrix of indicator variables (0, 1) for the observed outcome
Y*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed outcome category. Each row should contain exactly one 0 entry and exactly one 1 entry.- w_mat
Matrix of E-step weights obtained from
w_j.- sample_size
An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix,
Z.- n_cat
The number of categorical values that the true outcome,
Y, and the observed outcome,Y*can take.