Estimate Bootstrap Standard Errors using OLS
COMMA_OLS_bootstrap_SE.Rd
Estimate Bootstrap Standard Errors using OLS
Usage
COMMA_OLS_bootstrap_SE(
parameter_estimates,
sigma_estimate = 1,
n_bootstrap,
n_parallel,
x_matrix,
z_matrix,
c_matrix,
tolerance = 1e-07,
max_em_iterations = 1500,
em_method = "squarem"
)
Arguments
- parameter_estimates
A column matrix of \(\beta\), \(\gamma\), and \(\theta\) parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) \(\beta\) (intercept, slope), 2) \(\gamma\) (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) \(\theta\) (intercept, slope, coefficient for
x
, slope coefficient form
, slope coefficient forc
, and, optionally, slope coefficient forxm
if using).- sigma_estimate
A numeric value specifying the estimated standard deviation. Default is 1.
- n_bootstrap
A numeric value specifying the number of bootstrap samples to draw.
- n_parallel
A numeric value specifying the number of parallel cores to run the computation on.
- x_matrix
A numeric matrix of predictors in the true mediator and outcome mechanisms.
x_matrix
should not contain an intercept and no values should beNA
.- z_matrix
A numeric matrix of covariates in the observation mechanism.
z_matrix
should not contain an intercept and no values should beNA
.- c_matrix
A numeric matrix of covariates in the true mediator and outcome mechanisms.
c_matrix
should not contain an intercept and no values should beNA
.- tolerance
A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is
1e-7
.- max_em_iterations
A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is
1e-7
.- em_method
A character string specifying which EM algorithm will be applied. Options are
"em"
,"squarem"
, or"pem"
. The default and recommended option is"squarem"
.
Value
COMMA_OLS_bootstrap_SE
returns a list with two elements: 1)
bootstrap_df
and 2) bootstrap_SE
. bootstrap_df
is a data
frame containing COMMA_OLS
output for each bootstrap sample. bootstrap_SE
is a data frame containing bootstrap standard error estimates for each parameter.
Examples
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, 2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
interaction_indicator = FALSE,
outcome_distribution = "Normal",
true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)
gamma_start <- matrix(rep(1, 4), nrow = 2, ncol = 2)
theta_start <- matrix(rep(1, 4), ncol = 1)
Mstar = example_data[["obs_mediator"]]
outcome = example_data[["outcome"]]
x_matrix = example_data[["x"]]
z_matrix = example_data[["z"]]
c_matrix = example_data[["c"]]
OLS_results <- COMMA_OLS(Mstar, outcome,
x_matrix, z_matrix, c_matrix,
beta_start, gamma_start, theta_start)
OLS_results
#> Parameter Estimates Convergence Method
#> 1 beta1 0.8272721 TRUE OLS
#> 2 beta2 -1.6154039 TRUE OLS
#> 3 beta3 0.3586729 TRUE OLS
#> 4 gamma11 1.2279060 TRUE OLS
#> 5 gamma21 1.3535571 TRUE OLS
#> 6 gamma12 -0.4846708 TRUE OLS
#> 7 gamma22 -1.4126826 TRUE OLS
#> 8 theta0 0.8900722 TRUE OLS
#> 9 theta_m -1.9041094 TRUE OLS
#> 10 theta_x 1.5529579 TRUE OLS
#> 11 theta_c1 2.0215448 TRUE OLS
OLS_SEs <- COMMA_OLS_bootstrap_SE(OLS_results$Estimates, sigma_estimate = 1,
n_bootstrap = 3,
n_parallel = 1,
x_matrix, z_matrix, c_matrix)
OLS_SEs$bootstrap_SE
#> # A tibble: 11 × 3
#> Parameter Mean SE
#> <chr> <dbl> <dbl>
#> 1 beta1 0.836 0.0726
#> 2 beta2 -1.54 0.0381
#> 3 beta3 0.310 0.108
#> 4 gamma11 1.25 0.189
#> 5 gamma12 -0.293 0.577
#> 6 gamma21 1.52 0.424
#> 7 gamma22 -2.05 0.571
#> 8 theta0 2.01 0.118
#> 9 theta_c1 2.03 0.0255
#> 10 theta_m 1.36 0.154
#> 11 theta_x -1.97 0.0790