Package index
-
true_classification_prob()
- Compute Probability of Each True Mediator, for Every Subject
-
misclassification_prob()
- Compute Conditional Probability of Observed Mediator Given True Mediator, for Every Subject
-
COMMA_EM()
- EM Algorithm Estimation of the Binary Mediator Misclassification Model
-
COMMA_EM_bootstrap_SE()
- Estimate Bootstrap Standard Errors using EM
-
COMMA_PVW()
- Predictive Value Weighting Estimation of the Binary Mediator Misclassification Model
-
COMMA_PVW_bootstrap_SE()
- Estimate Bootstrap Standard Errors using PVW
-
COMMA_OLS()
- Ordinary Least Squares Estimation of the Binary Mediator Misclassification Model
-
COMMA_OLS_bootstrap_SE()
- Estimate Bootstrap Standard Errors using OLS
Data generation for examples and sample datasets
Function to generate data with misclassified binary outcomes
-
COMMA_data()
- Generate Data to use in COMMA Functions
-
NCHS2022_sample
- Example data from the National Vital Statistics System of the National Center for Health Statistics (NCHS), 2022
-
COMBO_EM_algorithm()
- EM-Algorithm Estimation of the Binary Outcome Misclassification Model
-
COMBO_EM_function()
- EM-Algorithm Function for Estimation of the Misclassification Model
-
COMBO_weight()
- Compute E-step for Binary Outcome Misclassification Model Estimated With the EM-Algorithm
-
COMMA_boot_sample()
- Generate Bootstrap Samples for Estimating Standard Errors
-
EM_function_bernoulliY()
- EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_bernoulliY_XM()
- EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_normalY()
- EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_normalY_XM()
- EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_poissonY()
- EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_poissonY_XM()
- EM Algorithm Function for Estimation of the Misclassification Model
-
pi_compute()
- Compute Probability of Each True Outcome, for Every Subject
-
pistar_compute()
- Compute Conditional Probability of Each Observed Outcome Given Each True Outcome, for Every Subject
-
sum_every_n()
- Sum Every "n"th Element
-
sum_every_n1()
- Sum Every "n"th Element, then add 1
-
theta_optim()
- Likelihood Function for Normal Outcome Mechanism with a Binary Mediator
-
theta_optim_XM()
- Likelihood Function for Normal Outcome Mechanism with a Binary Mediator and an Interaction Term
-
w_m_binaryY()
- Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm
-
w_m_normalY()
- Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm
-
w_m_poissonY()
- Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm