Package index
-
true_classification_prob() - Compute Probability of Each True Mediator, for Every Subject
-
misclassification_prob() - Compute Conditional Probability of Observed Mediator Given True Mediator, for Every Subject
-
COMMA_EM() - EM Algorithm Estimation of the Binary Mediator Misclassification Model
-
COMMA_EM_bootstrap_SE() - Estimate Bootstrap Standard Errors using EM
-
COMMA_PVW() - Predictive Value Weighting Estimation of the Binary Mediator Misclassification Model
-
COMMA_PVW_bootstrap_SE() - Estimate Bootstrap Standard Errors using PVW
-
COMMA_OLS() - Ordinary Least Squares Estimation of the Binary Mediator Misclassification Model
-
COMMA_OLS_bootstrap_SE() - Estimate Bootstrap Standard Errors using OLS
Data generation for examples and sample datasets
Function to generate data with misclassified binary outcomes
-
COMMA_data() - Generate Data to use in COMMA Functions
-
NCHS2022_sample - Example data from the National Vital Statistics System of the National Center for Health Statistics (NCHS), 2022
-
COMBO_EM_algorithm() - EM-Algorithm Estimation of the Binary Outcome Misclassification Model
-
COMBO_EM_function() - EM-Algorithm Function for Estimation of the Misclassification Model
-
COMBO_weight() - Compute E-step for Binary Outcome Misclassification Model Estimated With the EM-Algorithm
-
COMMA_boot_sample() - Generate Bootstrap Samples for Estimating Standard Errors
-
EM_function_bernoulliY() - EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_bernoulliY_XM() - EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_normalY() - EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_normalY_XM() - EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_poissonY() - EM Algorithm Function for Estimation of the Misclassification Model
-
EM_function_poissonY_XM() - EM Algorithm Function for Estimation of the Misclassification Model
-
pi_compute() - Compute Probability of Each True Outcome, for Every Subject
-
pistar_compute() - Compute Conditional Probability of Each Observed Outcome Given Each True Outcome, for Every Subject
-
sum_every_n() - Sum Every "n"th Element
-
sum_every_n1() - Sum Every "n"th Element, then add 1
-
theta_optim() - Likelihood Function for Normal Outcome Mechanism with a Binary Mediator
-
theta_optim_XM() - Likelihood Function for Normal Outcome Mechanism with a Binary Mediator and an Interaction Term
-
w_m_binaryY() - Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm
-
w_m_normalY() - Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm
-
w_m_poissonY() - Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm