Estimate Bootstrap Standard Errors using PVW
COMMA_PVW_bootstrap_SE.Rd
Estimate Bootstrap Standard Errors using PVW
Usage
COMMA_PVW_bootstrap_SE(
parameter_estimates,
sigma_estimate,
n_bootstrap,
n_parallel,
outcome_distribution,
interaction_indicator,
x_matrix,
z_matrix,
c_matrix,
tolerance = 1e-07,
max_em_iterations = 1500,
em_method = "squarem",
random_seed = NULL
)
Arguments
- parameter_estimates
A column matrix of \(\beta\), \(\gamma\), and \(\theta\) parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) \(\beta\) (intercept, slope), 2) \(\gamma\) (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) \(\theta\) (intercept, slope, coefficient for
x
, slope coefficient form
, slope coefficient forc
, and, optionally, slope coefficient forxm
if using).- sigma_estimate
A numeric value specifying the estimated standard deviation. This value is only required if
outcome_distribution
is"Normal"
. Default is 1. For non-Normal outcome distributions, the value should beNULL
.- n_bootstrap
A numeric value specifying the number of bootstrap samples to draw.
- n_parallel
A numeric value specifying the number of parallel cores to run the computation on.
- outcome_distribution
A character string specifying the distribution of the outcome variable. Options are
"Bernoulli"
,"Normal"
, or"Poisson"
.- interaction_indicator
A logical value indicating if an interaction between
x
andm
should be used to generate the outcome variable,y
.- x_matrix
A numeric matrix of predictors in the true mediator and outcome mechanisms.
x_matrix
should not contain an intercept and no values should beNA
.- z_matrix
A numeric matrix of covariates in the observation mechanism.
z_matrix
should not contain an intercept and no values should beNA
.- c_matrix
A numeric matrix of covariates in the true mediator and outcome mechanisms.
c_matrix
should not contain an intercept and no values should beNA
.- tolerance
A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is
1e-7
.- max_em_iterations
A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is
1e-7
.- em_method
A character string specifying which EM algorithm will be applied. Options are
"em"
,"squarem"
, or"pem"
. The default and recommended option is"squarem"
.- random_seed
A numeric value specifying the random seed to set for bootstrap sampling. Default is
NULL
.
Value
COMMA_PVW_bootstrap_SE
returns a list with two elements: 1)
bootstrap_df
and 2) bootstrap_SE
. bootstrap_df
is a data
frame containing COMMA_PVW
output for each bootstrap sample. bootstrap_SE
is a data frame containing bootstrap standard error estimates for each parameter.
Examples
# \donttest{
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
interaction_indicator = FALSE,
outcome_distribution = "Bernoulli",
true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)
gamma_start <- matrix(rep(1, 4), nrow = 2, ncol = 2)
theta_start <- matrix(rep(1, 4), ncol = 1)
Mstar = example_data[["obs_mediator"]]
outcome = example_data[["outcome"]]
x_matrix = example_data[["x"]]
z_matrix = example_data[["z"]]
c_matrix = example_data[["c"]]
PVW_results <- COMMA_PVW(Mstar, outcome, outcome_distribution = "Bernoulli",
interaction_indicator = FALSE,
x_matrix, z_matrix, c_matrix,
beta_start, gamma_start, theta_start)
#> Warning: non-integer #successes in a binomial glm!
PVW_results
#> Parameter Estimates Convergence Method
#> 1 beta_1 0.8272721 TRUE PVW
#> 2 beta_2 -1.6154039 TRUE PVW
#> 3 beta_3 0.3586729 TRUE PVW
#> 4 gamma11 1.2279060 TRUE PVW
#> 5 gamma21 1.3535571 TRUE PVW
#> 6 gamma12 -0.4846708 TRUE PVW
#> 7 gamma22 -1.4126826 TRUE PVW
#> 8 theta_0 0.6481385 TRUE PVW
#> 9 theta_x1 1.7419080 TRUE PVW
#> 10 theta_m -1.6710536 TRUE PVW
#> 11 theta_c1 -0.1796049 TRUE PVW
PVW_SEs <- COMMA_PVW_bootstrap_SE(PVW_results$Estimates,
sigma_estimate = NULL,
n_bootstrap = 3,
n_parallel = 1,
outcome_distribution = "Bernoulli",
interaction_indicator = FALSE,
x_matrix, z_matrix, c_matrix,
random_seed = 1)
PVW_SEs$bootstrap_SE
#> # A tibble: 11 × 3
#> Parameter Mean SE
#> <chr> <dbl> <dbl>
#> 1 beta_1 0.982 0.310
#> 2 beta_2 -1.52 0.335
#> 3 beta_3 0.312 0.0297
#> 4 gamma11 1.13 0.210
#> 5 gamma12 -0.384 0.0427
#> 6 gamma21 1.58 0.711
#> 7 gamma22 -2.49 0.463
#> 8 theta_0 0.868 0.118
#> 9 theta_c1 -0.270 0.0791
#> 10 theta_m -1.78 0.0701
#> 11 theta_x1 1.72 0.0350
# }